"Ecodirect.com is the best ! They are such
a pleasure to work with! They offer all the
best brands at the best prices. Special
thanks to Renée who always answered my
questions on the spot, sharing her real
knowledge and giving me the best advices."
Serge (Tahiti, French
Polynesia)
"The experience I had with my purchase was
very good. The items I ordered arrived when
I expected & were packaged well. My overall
purchasing experience was very
positive."
- Thank you,
Marlene
"I recently found EcoDirect & have been
extremely happy with their service. They
have had all the PV modules, inverters,
optimizers and accessories I needed. They
provide excellent customer service & turn
orders around very quickly. I have switched
to EcoDirect for all my parts & materials
orders. Highly recommended."
- Zeno
"I wanted to let you know I am very pleased
with the service you gave & the quality &
condition of the solar panels I received
from EcoDirect. I will purchase more items
in the future from EcoDirect and will be
sure to tell others about your fine
operation."
Thanks,
Maurice
"Thanks EcoDirect! My solar system is up
and running; waiting for City and San Diego
Gas & Electric inspections this week; so
far so good!"
- J.L.,
Oceanside, CA
"I enjoyed ordering what I needed. It was
simple and fast, no issues what so ever. If
I need something else and its at a good
price, I will defiantly order from here
again. Also the shipping is at a good
price."
- Simon
My shipment arrived on time, as predicted.
Very, very good performance by EcoDirect.
What more could you ask for from an online
material supplier? Looks like the quantity
from Quick Mount is spot on & the rails
were bundled safely. EcoDirect will be my
recommended source to my friends &
neighbors for solar. - Thank you, Jim
Lake
Escondido, CA
"Over the past couple of years, I have
purchased several items from Ecodirect and
I have always been happy with their
customer service and prompt delivery of
products."
- Chris
"I am very satisfied, everything was as
expected."
Like all inverters, a grid-tie or grid-interactive inverter converts the direct current (DC) power from your renewable energy source into the alternating current (AC) used in homes and businesses. These inverters are intended specifically for grid-tied applications where they will be tied into the utility grid.
While it is possible to completely eliminate your utility bill with a grid-tie system, many homeowners use grid-tie systems to supplement their usage by using a combination of both their utility grid and their solar array (ie. 70% solar, 30% utility grid). A grid-tie system can also offset 100% of your energy needs.
One of the major benefits of a grid-tie system is net metering, where unused energy is fed back into the utility grid. When no power is being generated by the renewable energy system, the home's power is drawn from the utility grid. The energy the homeowner pays for is the difference between the power drawn from the grid and the power fed into the grid. Most grid-tie inverters cannot be used independently of the utility grid.
What is a power inverter?
The basic function of a solar powered inverter is to convert the direct current to alternating current. Solar panels, and in fact almost all eco-friendly power sources such a wind turbines, generate “direct current”. But almost everything that makes up the fabric of
civilization runs on alternating current. Current flows from a battery or solar cell in one direction, but an alternating current stream reverses direction 60 times each second. While this may seem wasteful, the detailed physics of the situation mean the alternating current can be sent over longer distances more efficiently that direct current. Don’t worry if the advantages of AC current do not seem obvious - even Thomas Edison was uncomfortable with alternating current! Suffice it to say that almost all the devices in your home; motors, appliances, televisions, use alternating current.
What is a grid tie power inverter?
The main difference between a standard power inverter and a grid tie power inverter is that the latter also ensures that the power supplied will be in phase with grid power. This allows individuals with surplus power (wind, solar, etc) to sell the power back to the utility in the form of net metering or the arrangement your local utility offers.
On the AC side a grid tie inverter must supply electricity in sinusoidal form, synchronized to the frequency of the grid and limit the feed in voltage to no higher than the grid voltage. A grid tie inverter also must disconnect from the grid if the utility grid goes down (blackout). In the event of a blackout, the grid tie inverter will shut down to prevent potentially harming the line workers who are sent to fix the power grid. See wikipedia article on
grid tie inverters.
On the DC side, the power output of a module varies as a function of the voltage in a way that power generation can be optimized by varying the system voltage to find the 'maximum power point'. Most inverters therefore incorporate 'maximum power point tracking' (MPPT).
How Solar Powered Inverters and Alternating Current work
The alternating current we usually need to get from our solar powered inverter needs to match the alternating current from our electrical utility. This current alternates because it is produced by rotating electrical generators. Current flows when a coil of wire passes thru a magnetic field. Generators are designed to pass coils of wire thru a magnetic field as they spin, so the current actually leaves, and then returns, to the power plant. As it happens, by using alternating current, the system can be designed for higher voltage and lower current, allowing more power to move thru the grid with less loss to heat.
Current is what causes energy to be wasted in power transmission thru wire. To reduce this ‘line drop’ loss, the voltage applied at the power plant which drives this current can be rather high. Along the way to your house, the voltage is ‘dropped’ in a series of transformers which can be thought of as big coils of wire, almost as a generator with no moving parts.
A solar powered inverter, like any inverter, converts steady direct current from a solar cell or battery to a smooth oscillating sine wave by switching the DC power on and off, very quickly. As a rough cut, switching the DC power 60 times a second creates what is called a ‘square’ wave. But if we subtract out power switched 180 times a second we can ‘round the corners’ of the square’ a bit. And by further switching in power at 300 and out at 420 times a second an inverter can approach a smooth AC wave quite closely. Some electrical components (capacitors and inductors) used on the AC Side of the inverter can store and discharge a bit of power as the many square waves pass, further smoothing out the stack of square waves and approximate regular AC Power.